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Abstract

In this study, we consider traveler coupon redemption behavior from the perspective of an
urban mobility service. Assuming traveler behavior is in accordance with the principle of utility
maximization, we first formulate a baseline dynamical model for traveler’s expected future trip
sequence under the framework of Markov decision processes and from which we derive approxima-
tions of the optimal coupon redemption policy. However, we find that this baseline model cannot
explain perfectly observed coupon redemption behavior of traveler for a car-sharing service.

To resolve this deviation from utility-maximizing behavior, we suggest a hypothesis that trav-
elers may not be aware of all coupons available to them. Based on this hypothesis, we formulate an
inattention model on unawareness, which is complementary to the existing models of inattention,
and incorporate it into the baseline model. Estimation results show that the proposed model better
explains the coupon redemption dataset than the baseline model. We also conduct a simulation
experiment to quantify the negative impact of unawareness on coupons’ promotional effects. These
results can be used by mobility service operators to design effective coupon distribution schemes
in practice.

Keywords: inattention, Markov decision process, utility maximization

1 Introduction

Recently, incentive-based demand management methods have become popular in urban mobility busi-
nesses. The most well-known approach is dynamic pricing. On one hand, service operators can mitigate
the shortage of supply in real time with surge pricing [9], which is first deployed by Uber on a large scale
and now commonly used by ride-sharing platforms. On the other hand, operators can use real-time
price discount to attract users and compete with alternative mobility services. Another commonly
used tool is the coupons, which are vouchers that guarantee rights of fare reductions in consumption of
products or services. Because coupons can change the fare only in the negative direction, their usage
is usually limited to promotions. However, coupons are able to inform travelers about the possibility
of fare reduction before they submit trip requests, while a traveler can be aware of any real-time price
discount only after the service operator provides an offer. Therefore, coupons are a good complement
to pricing for urban mobility service operators.

Nevertheless, the impact of coupons on traveler behavior is not immediately obvious. Unlike
pricing, coupons usually have long life cycles and can have complicated redemption rules. A traveler
may then develop sophisticated coupon redemption policy to optimize her aggregate utility from trips.
For example, when the fare of the current trip is much lower than the face value of a coupon, a traveler
will defer the redemption of this coupon to a later trip. The situation becomes increasingly complex
when the traveler is presented with various coupons and some coupons may have their face values,
expiration dates, and redemption rules different from those of others. For example, the traveler can
have one coupon that can reduce the fare of one trip for up to 5 dollars and another to reduce the fare
of one trip by 20%.

Moreover, in a typical urban mobility service setting, coupons are involved in several different
decision problems such as the travel mode selection and the coupon selection for payment. Because
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the service operator does not have complete information about the traveler, structural estimation of
coupon impact on some decision problems is not practical. For instance, operator of one mobility
service is not able to distinguish between the promotional effect in market share from her own coupon
distribution strategy and the one from coupon distribution strategies of alternative mobility services.
In this case, the operator can only assess the impact of coupons on the travel mode selection behavior
with direct experiments on coupon distribution strategies and the result is generally not stable with
respect to changes in operations of alternative mobility services.

Recognizing these difficulties, in this study, we focus on travelers’ coupon selection behavior.
Coupon selection is a relatively simple decision problem compared with others because the decision
mostly depends on the traveler’s evaluation of coupons. Moreover, for this problem, we are able to
acquire adequate data for model estimation.

Specifically, in this study, we consider a setting in which an operator provides an urban mobility
service via a mobile app and occasionally distributes electronic coupons (e-coupons) to attract travelers
and to boost revenue. Moreover, to focus on the traveler behavior, we assume that travelers’ decisions
are independent of the operator’s coupon distribution strategy. The e-coupon is in a simple format:
each e-coupon can be represented by its face value and expiration date. These e-coupons are stored in
an online electronic wallet (e-wallet) within the app and visually accessible only when travelers open
their e-wallet. After a trip, the traveler can select up to one coupon for redemption, and a coupon can
reduce the payment by subtracting from the trip fare its face value, at most.

In selecting a coupon for redemption, the traveler evaluates for each coupon both its immediate
redemption value and the future redemption value of the rest of coupons. To infer these evaluations,
we first notice that the immediate redemption value can be obtained directly from the definition of
a coupon. Then, we develop a dynamical model of trip sequences to estimate the values of future
coupon redemption, because these values depend on trips happened during the life cycle of the coupon
set. In particular, we view the trip generation and realization process (expected by the traveler) as a
Markov decision process (MDP) and derive value approximations by assuming the utility-maximization
behavior of travelers and solving for the optimal value function of the MDP. The resulting optimal
policy also dictates the coupon selection behavior of a utility-maximization traveler.

However, we find that the observed coupon selection behavior of travelers for a car-sharing service
deviates from the above model. To explain this finding, we discuss several possibilities and finally come
up with the hypothesis that travelers may not be aware of all available coupons. We then provide a
mathematical formulation for such patterns of unawareness and incorporate it into the aforementioned
MDP.

Subsequent estimation results show that the proposed unawareness model better explains the
coupon redemption dataset than baseline models. A simulation experiment further shows that if
such unawareness exists the reduction rate on coupons’ promotional effects can be as great as 10%.

The contribution of this work is twofold. First, the proposed unawareness model is complementary
to the existing models of inattention and they have completely different behavioral implications. There-
fore, when existing inattention models fail to explain some dataset, one can consider the unawareness
model. Second, our estimation results can be used by mobility service operators in designing effective
coupon distribution schemes in practice.

The rest of this paper is organized as follows. In Section 2, we summarize related works on coupons,
estimation of dynamic behavior, and limited attention. In Section 3, we formulate the dynamical
model for the trip sequences and derive the optimal coupon redemption policy and the corresponding
evaluation of available coupons. In Section 4, we describe the dataset from a car-sharing service and
show the discrepancies between the observed coupon redemption behavior and decisions dictated by the
optimal policy. In Section 5, we extend the baseline dynamical model with a mathematical formulation
of unawareness. In Section 6, we summarize the estimation results of the proposed model. In Section
7, we conduct a simulation experiment to assess the impact of unawareness on the promotional effect
of coupons. Finally, in Section 8, we conclude our work and suggest directions for future research.

In later discussions, we use the terms “inattention” and “unawareness” interchangeably. Moreover,
general inattention behavior that is not explicable by unawareness is denoted as “deliberate attention”.
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2 Literature Review

2.1 Customer behavior with coupons

As a major type of price promotions, coupons have been studied in marketing literature for decades,
resulting in numerous theoretical and empirical papers. Here, we provide only a brief summary of the
major focus of this literature and highlight the novelty of our study.

Decades ago, merchants usually designed coupons with simple redemption rules. For example, a
grocery store can issue coupons for a specific product with the same face value and valid period. Given
this simplicity, the optimal coupon redemption strategy is trivial to compute. Therefore, research
on customer behavior at that time mainly focused on customers’ coupon proneness, or the (latent)
intention of obtaining and redeeming coupons. Such coupon proneness was usually estimated from
socio-economic factors [25, 5, 22]. Simple redemption rules also lead to aggregate coupon redemption
patterns that can be described by some elementary functions. For example, Ward and Davis [38]
suggested that after coupon issuance, the coupon redemption rate declines exponentially as time passes.
Inman and McAlister [21] further considered the impacts of expiration dates and extended the above
model with a hyperbolic function.

With the rising popularity of online shopping, merchants now prefer to use e-coupons over tradi-
tional paper coupons in price promotions. This change leads to two patterns. First, because e-coupons
can be distributed with low cost and in large-scale, merchants can now reach out to a large number of
customers and each customer may receive coupons from a variety of merchants. Second, because the
redemption of e-coupons is processed by computers rather than human beings, merchants are now able
to develop complicated redemption rules. Under these patterns, the structural estimation of customer
behavior with coupons becomes considerably more difficult. Therefore, recent research mostly focused
on reduced-form models or even data-driven approaches. For example, Reimers and Xie [32] proposed
reduced-form models for coupons’ market expansion and revenue cannibalization effects. The authors
estimated their models using restaurant coupon data from Groupon. Zhang et al. [39] investigated the
short and long-term effects of coupon distributions on customer behavior by conducting randomized
field experiments on the Taobao Marketplace, the largest online C2C platform in China. The authors
applied linear models to explain their experimental findings at an aggregate level.

Our work differs from the ones mentioned above in that we consider a structural model under
general coupon redemption schemes. We point out that the proposed dynamical structural model is
similar to the ones used in the estimation of multi-stage household consumption [15, 8]. We briefly
discuss this connection in the next subsection.

2.2 Inference on temporal correlated behavior

When people model real-world human behavior, they usually assume that human behaves according to
the utility-maximization principle. Then, the inference problem can be reduced to a model estimation
problem for the utility function. However, when the observations come from some sequential decision
processes, the corresponding utility-maximizing policy needs to consider not only the utility from
immediate actions but also those in the future. In this case, the connection between the (single-step)
utility function and the (multiple-step) utility-maximizing policy is not immediately obvious.

In the field of econometrics, such estimation problems are generally framed as the dynamic discrete
choice (DDC) problems. The first practical estimation algorithm for DDC models, the nested fixed
point algorithm, is proposed by Rust [33] in the 1980s to describe the engine replacement behavior of
a bus company. This estimation algorithm refers to a two-stage optimization process: first, find the
optimal value function V corresponding to the utility function determined by θ; then, do local searches
for a better θ according to the estimates V . The huge computational burden makes this algorithm
intractable for more general use, and from then on more computationally efficient algorithms, such as
Hotz-Miller’s conditional choice probability method [20], have been suggested. Interested readers are
referred to Aguirregabiria and Mira [3] and Heckman and Navarro [16] for more details on these recent
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developments.
The estimation algorithms of dynamic discrete choice models share many similarities with the re-

ward learning methods for the inverse reinforcement learning (IRL) problems. Compared with dynamic
discrete choice models, these methods assume less structural knowledge of the utility (reward) function
and allow for more freedom on the choice of the function form. For instance, we can use deep neural
networks to capture the complex relationship between the state and the reward. However, in this
case, the estimation problem is generally ill-posed [31, 40] and one needs to add other regularization
or penalty terms to obtain meaningful reward functions. For example, Ziebart et al. [40] construct an
entropy-regularized maximum likelihood estimator for IRL problems; Abeel and Ng [2] consider an op-
timization problem to find the maximum margin hyperplane that separates the expert demonstrations
from other non-optimal policies.

Reward learning methods have been the major research focus of IRL problems since the last decade;
however, recently, there have been more interests in methods that train policy from demonstration di-
rectly. In particular, several papers [17, 12, 11] suggest that the optimal policy corresponded to
the recovered reward function from a reward learning method can be viewed as the policy learned
from behavioral cloning (supervised learning) of the observed behavior under the regularization con-
dition uniquely determined by the same method. This interpretation is then used to develop several
generative-adversarial-network (GAN) based IRL methods for simultaneous policy learning and re-
ward learning, and these methods achieve better learning performance compared with state-of-the-art
baselines.

In this paper, we avoid the aforementioned difficulties in utility estimation by direct approximations.
Specifically, we assume that the utility is additively separable: the total utility from each trip can be
decomposed as the sum of the utility from coupon redemption, which is in the monetary unit and
there is no need for estimation, and the unknown utility from the trip itself. Then, we show by
mathematical derivation that the unknown utility from the trip can be safely ignored under certain
regularity conditions. Under these assumptions, we can approximate the optimal value function of the
sequential decision problem with a value determined only by the values of immediate or future coupon
redemption, and the computation can be done at once before model estimations.

2.3 Limited attention and consideration set

One novelty of our work is that we explicitly model the impact of unawareness in travelers’ decision
dynamics. In this subsection, we review the related literature on discrete choice problems under limited
attention.

Discrete choice problems under limited attention can generally be described by a three-stage deci-
sion process [35]. First, an awareness subset is drawn from the whole choice set by chance. Then the
decision maker (DM) deliberately limits her attention to a consideration subset of the awareness set.
Finally, the DM makes a choice within the consideration set. Most works in the literature focus only on
the second stage, i.e. the generation of a consideration set, possibly limited by available data or by the
problems with identification. Recently, theoretical works, including the one of Masatlioglu et al. [30],
introduced frameworks that viewed the awareness set and the consideration set as an individual object.
However, as illustrated later in this paper, these two terms should not be used interchangeably in a
dynamic decision model because they are generated according to different mechanisms. In particular,
the generation of an awareness set is an action taken by nature and needed to be explicitly modeled
with the dynamical model, whereas the generation of an consideration set is an action taken by the
DM and is implicitly modeled in a class of decision strategies(policies). In this study, we specifically
focus on the modeling of the former.

The modeling of discrete choice problems under limited attention started in the 1970s [27]. At that
time, researchers were interested in theoretically attractive extensions of classic discrete choice models,
e.g., the multinomial logit (MNL) model. As an initial work, Manski [27] introduced a random set
model, in which each choice is independently considered for attention. The computational complexity
of this model scales with the power of the choice set size because the consideration set can be any
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subset of the whole choice set. This model is referred to as the “Manski model” in the discussion below.
Later, Swait and Ben-Akiva [37] developed the parameterized logit captivity (PLC) model, in which
the consideration set can either be the whole choice set or contain a single choice option. Empirical
works [6, 37] showed that these models had better explanatory power than the pure MNL model.

Since the last two decades, customers have been able to browse and purchase an increasing number
of products either online or via mobile apps, thanks to the developments of information technology.
With very large choice sets, consumers exhibit decision patterns that deviate much from rationality
but can possibly be explained by limited attention. Consequently, there had been rising interests in
understanding and exploiting such behavior, and we witnessed a burgeoning number of empirical works
on consideration sets. For example, Chiang et al. [10] estimated a random-parameter extension of the
Manski model using data on households’ choices among four ketchup brands. Goeree [14] estimated the
Manski model using data on customer choices among personal computer products in the US. Honka
[18] applied the concept of searching costs to develop an attention model and estimated it using a
dataset of customer choices among automobile insurance products in the US. Honka et al. [19] further
extended the above model by including the Manski model for the awareness set generation. The
authors estimated the resulting model using data on customer choices among bank accounts in the US.
All of these works claimed that the inclusion of the set consideration stage leads to better specifications
and estimation results.

At the same time, other scholars kept progressing in the theoretical development of the limited
attention mechanism. Manzini and Mariotti [28], Masatlioglu et al. [30], and Abaluck and Adams
[1] focused on the axiomatic formulation of the consideration set, aiming at extending the current
preference theory. Sims [36], Kim et al. [23], and Gabaix [13] considered information costs in the DM’s
search for choice options and developed models of rational inattention. Masatlioglu and Nakajima [29]
and Seiler[34] further extended these optimization models of option searching into dynamic decision
processes. For a comprehensive summary of recent theoretical developments, interested readers are
referred to the recent work by Masatlioglu et al. [30].

Restricted by application scenarios, the modeling of consideration sets had only been applied for
traveler mode choice or location choice behavior in the transportation literature. For example, Swait
and Ben-Akiva [37] estimated the PLC model using travel mode choice data in Sao-Paulo, Brazil.
Başar and Bhat [4] estimated the Manski model using data on passenger choices among four airports
in the San Francisco Bay Area. Mahmoud et al. [26] estimated the PLC model with a dataset of travel
mode choices in the city of Toronto.

Our inattention model is distinct from the above models in two aspects. First, we consider behavior
under limited attention in a dynamic decision process. Second, we pay more attention to the generation
of awareness sets than to the generation of consideration sets. Simulation results in later sections show
that such modeling differences actually lead to important practical implications.

3 Baseline Model

In this section, we formulate a dynamical model for trip sequences to derive the utility-maximizing
coupon redemption policy and the corresponding evaluation of available coupons. Without loss of
generality, in following discussions we always assume that utilities are in the monetary unit. The
model formulation is decomposed into two parts. First, we specify the temporal correlation between
consecutive trips. In particular, we model the trip generation process as a discrete time dynamical
system with the available coupon set being the only state variable that keeps changing across trips.
Secondly, we construct a structural model for individual trips. Specifically, we view an individual trip
as a combination of two stages: the travel mode selection stage and the coupon selection stage. The
overall structure of the dynamical model is described in Figure 1. One should notice that not all
elements in this figure are observable from our perspective; for instance, a trip will be observed only
if the target mobility service is chosen.

Next, we summarize several general assumptions about the dynamical model that mentioned ex-
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Figure 1: Structure of the dynamical model for trip sequences

plicitly earlier in this paper.

Assumption 1. (a) Each coupon is represented by its face value and expiration date and can be
used freely before expiration. However, for each payment at most one coupon can be redeemed,
and the final trip fare must be nonnegative (that is, the reduction in fare cannot exceed the fare
itself).

(b) The traveler only considers trip events for the future; therefore, the traveler has no expectation
on future coupon arrivals.

Later in Section 4, we will show that both assumptions are reasonable for our dataset.

3.1 Notation of coupons

Before proceeding to the model formulation, we first discuss the notations of coupons. A coupon c̃
consists of a face value v and the remaining time to expire T , whereas an available coupon set includes
many coupons. However, directly modeling coupon set C as a set of coupons {c̃1, · · · , c̃m} does not
always work here, because a mathematical “set” requires its every element to be distinct, but a traveler
usually has several coupons with the same v and T .

To overcome this difficulty, we model coupons in groups: c = ⟨v, T, n⟩ ∈ R ×N ×N+, where n is
the number of coupons in the group. A coupon set C can then be defined as a finite set of coupon
groups C = {c1, · · · , cm} ⊂ R × N × N+, which is subject to the restriction that any two coupon
groups ci, cj in C cannot have the same characteristics (v, T ). Moreover, the coupon set C should
always include the option of selecting no coupon; here, this default option is represented by a coupon
group of zero-valued coupons c0 = ⟨0, 0, 1⟩. We further define C0 as the default set {c0}. We use C to
represent the set of all possible coupon sets.

Now, a natural subset Ca of the coupon set C is not necessarily a mathematical subset of C.
However, given C = {c1, · · · , cm} and ci = ⟨vi, Ti, ni⟩, we can characterize Ca as follows: Ca = {cai |i ∈
Ia} ∈ C, where the index set Ia ⊂ {1, 2, · · · ,m}, and coupon group cai = ⟨vi, Ti, n

a
i ⟩ with 0 < na

i ≤ ni.
We use A(C) to denote the set of all possible subsets Ca of C.

3.2 Temporal correlation among trips

A simple way to describe a trip sequence is to discretize the time into steps according to a unit t0
and allocate each trip to a time step. For example, we can generate the trip for traveler j in a time
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step according to a Bernoulli distribution B(1, λj) (the probability of having a trip demand in each
time step is λj) and assuming trips from different time steps are generated independently. However,
the selection of an appropriate time unit t0 is not trivial in general: on one hand, when t0 is large,
e.g., t0 = 1 week, it is unlikely that a traveler has no more than one trip within a time step; on the
other hand, when t0 is small, e.g., t0 = 1 minute, a trip can last for many time steps and the temporal
correlation between consecutive time steps can be strong. For instance, a traveler who just finished
a trip 10 mins ago is less likely to submit a trip request now. Also, the computation complexity of
modeling trip sequences within a specific time range is inverse proportional to t0 and can lead to
practical problems when t0 is very small.

A more natural model of trip sequences is to consider a continuous time setting and use stochastic
processes for trip generation. For example, Poisson processes generalize the independent Bernoulli
sampling process in the discrete time setting. However, this model also suffers from strong temporal
correlations among trips and huge computation complexity. In fact, this model is closely related to
discrete time models with very small t0, as shown in Appendix A.

Because the ultimate purpose in this section is to derive practical estimations of the future re-
demption value of coupons, here we choose to use a larger time unit t0 to reduce the modeling and
computation complexities. In particular, we want to select a large enough t0 such that the following
assumption holds:

Assumption 2. For any mode i, the realized trip time t′xi is always upper bounded by the time unit t0

t′xi ≤ t0. (1)

This assumption says that a trip cannot last more than a time step. With this assumption, we avoid
the difficulty in modeling heterogeneous state transitions across time. For urban mobility services, a
t0 greater than three hours is generally adequate for Assumption 2 to hold. In subsequent discussion,
we always assume t0 = 1 day and write t0 = 1 for short.

One cost of selecting a large t0 is that we will underestimate the total number of trips and, therefore,
the value of future coupon redemption. Luckily, as will be shown later in Section 4, for our dataset
most of the travelers are low-frequency users of the car-sharing service; therefore the underestimation
of future coupon redemption values is not a severe problem.

Next we discuss the trip generation process in each time step. First, define λj,t as the probability
of traveler j having a trip demand in time step t. In general, λj,t depends on all the past information
(λj,t−1, · · · , λj,0, Sj,t−1, · · · , Sj,0), in which Sj,t is state variables for j at time t. However, inclusion of
these past information into the trip generation process leads to several practical issues: trips served by
alternative modes are not observed, so the past information for λj,t is always incomplete; even if we have
complete information, the dependency can be highly nonlinear, which leads to a difficult estimation
procedure and unstable predictions into the future. Therefore, we make the following assumption for
simplification:

Assumption 3. Trip generation rate λj,t does not rely on any past trip of traveler j and is fixed as
λj.

In practice, we can let λj be traveler j’s average trip generation rate. Intuitively, the estimation
of coupon redemption value from this approximation is reasonable when both the real λj,t does not
differ much from λj and the time range T in consideration is large.

In summary, in this study we consider a discrete time setting for trip generations, in which the
time unit t0 is 1 day and the probability of having a trip demand in each time step is a traveler-specific
constant λj .

Finally, we discuss the state transition of the available coupon set C between consecutive trips. C is
updated in two steps: first, if there is a coupon redemption c ̸= c0, the used coupon c̃ is removed from
the set C; secondly, every remaining coupon c̃′ in the set C becomes one-time-unit closer to expiration.
This updating procedure is described by the following state transition function f and coupon group
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transition function fc:

f(C, c) = {fc(c′)|c′ ∈ C/{c}} ∪ {fc(⟨v, T, n− 1⟩)}

fc(⟨v, T, n⟩) =

{
⟨v, T − 1, n⟩ v, n > 0, T ≥ 1

c0 otherwise

(2)

where we assume that c = ⟨v, T, n⟩. Notice that in general cases the update of time to expiration T
depends on tx; here the homogeneity is ensured by Assumption 2.

When there is no coupon selection, the state transition is described by f(C, c0). For simplicity, we
use f(C) to represent this default state transition f(C, c0).

3.3 Model of an individual trip

In the following formulation, we limit our discussion to a specific traveler j.
First, we simplify the interaction between the traveler and the target mobility service in an indi-

vidual trip as follows: at the beginning of a trip, the traveler decides which travel mode to use and
whether to cancel the trip. If the traveler selects a mode, she sticks with her choice until she arrives at
the destination. Upon arrival, the traveler proceeds to payment and if she selects the target mobility
service, she can decide which coupon to use. The trip ends after the payment. In other words, we
decompose an individual trip into two stages: travel mode selection and coupon selection.

In the stage of travel mode selection, the detail of the trip demand X, including the trip distance
and the current traffic situation, is revealed to the traveler. Without loss of generality, we use a
traveler-specific distribution Pj(·) to describe the generation of X. Moreover, following the same logic
as the discussion on λj in the last subsection, we make the following assumption:

Assumption 4. Distribution Pj(·) does not rely on any past trip of traveler j.

Given X, the traveler selects a travel mode or cancels the trip according to a traveler-specific policy
πxj and the mode-specific information such as available coupons for different mobility services. Without
loss of generality, let us assume that the potential travel modes are indexed as 0, 1, · · · , nj , where 0
corresponds to trip cancellation and 1 corresponds to the target mobility service. The probability of
selecting mode i can then be described as

P (i) = πxj(i|X, I0, · · · , Inj ), (3)

where Ii captures all private information about mode i of traveler j.
Because the specific selection probabilities P (0), P (2), · · · , P (nj) are not available to us, our dis-

cussion on the travel mode selection is restricted to the event {i = 1} (whether the target mobility
service is selected). Moreover, because we do not have the information I0, I2, · · · , Inj

, we need the
following assumption for subsequent developments:

Assumption 5. Information on the alternatives I0, I2, · · · , Inj are invariant among trips for any
traveler j.

We also make an assumption to simplify the form of I1:

Assumption 6. Information on the target mobility service I1 can be fully described by the available
coupon set C; other factors, such as the service quality, are assumed to be invariant among trips for
any traveler j.

Later in Section 4, we will show that both assumptions 5 and 6 can be partly justified for our
dataset.

Next, we make an assumption to simplify the form of the traveler’s decision policy πxj :
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Assumption 7. In selecting a travel mode, the traveler evaluates the utility uij(X, Ii) ∈ R for each
mode i and her decision depends exclusively on these utilities; that is, the policy πxj has the following
form

πxj(i|X, I0, · · · , Inj ) = π̃xj(i|u0j(X, I0), · · · , unjj(X, Inj )). (4)

The above three assumptions immediately lead us to the form

πxj(i|X,C) = π̃xj(i|u0j(X), u1j(X,C), · · · , unjj(X)); (5)

to simplify notations, in following discussion we use uxij to denote uij(X) and uxj to denote {ux0j , · · · , uxnjj}.
The next assumption is crucial for the computational tractability of our subsequent analysis.

Assumption 8. The utility from taking the target mobility service u1j(X,C) is the sum of the utility
from the service itself ux1j and the utility from potential coupon redemption u(px, C), where px ∈ R+

is the estimated trip fare with the target mobility service.

In summary, with above simplifications, the travel mode selection policy now reduces to

P (i = 1) = πxj(px,uxj , C) (6)

Next, we consider the stage of coupon selections. Assumption 1(a) restricts the action space of the
traveler and the traveler’s decision can now be interpreted as a probability distribution over the set
of available coupons. Without loss of generality, the coupon selection probability can be expressed as
P (c̃) = πc̃(c̃|X ′, C), where πc̃ is the coupon selection policy and X ′ captures the realized trip details. In
subsequent discussion we use distribution P ′

j to describe the generation of X ′ from X: X ′ ∼ P ′
j(·|X).

Because the traveler cannot distinguish among coupons in the same group c, we make the following
assumption to simplify the form of πc̃:

Assumption 9. The traveler makes selection in two steps. First, she selects one coupon group c from
her available coupon set C according to policy πc: P (c) = πc(c|X ′, C). Then, she chooses a coupon c̃
from this group c.

Next we simplify the form of X ′ in πc. To make an optimal decision, the traveler needs to evaluate
both the utility from immediate redemption and the one from future redemption. On one hand, by
definition the value r of redeeming a coupon in the group ⟨v, T, n⟩ given the realized trip fare p′x is
r(p′x, ⟨v, T, n⟩) = min(v, p′x). On the other hand, because of assumptions 3 and 4 the utility of future
redemption does not depend on the details X ′ of the current trip. Therefore, we can make the following
assumption:

Assumption 10. In the coupon selection stage the traveler only consider the realized trip fare p′x and
the coupon set C for decision; that is, πc(c|X ′, C) = πc(c|p′x, C).

3.4 Value functions and approximations

In this subsection, we derive optimal policy and value function of the above dynamical model and
develop practical approximations to characterize travelers’ coupon redemption behavior.

Suppose that the mode choice policy πxj and the coupon redemption policy πc are given. Since
our model includes several stages, to make subsequent discussions clearer, we introduce following
definitions: Uπ(C) is the expected utility gain from the target mobility service and coupon set C
at the beginning of the time step and is called the “ex ante utility”; Uπ

xj(px,uxj , C) is the expected
utility gain after the revealing of trip demand details and is called the “interim utility”; Uπ

c (p
′
x, C) is

the expected utility gain at the end of trip realization stage and is called the “ex post utility”.
First, depending on whether there is a trip in the time step, the realized ex ante utility Uπ(C)

equals to either the ex ante utility at the next time step Uπ(f(C)), or the expected interim utility
EX|Pj

Uπ
xj(px,uxj , C):

Uπ(C) = (1− λj)γU
π(f(C)) + λjEX|Pj

Uπ
xj(px,uxj , C), (7)
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where γ is the time discount factor for a time step.
Next, depending on whether the target mobility service is selected, the realized interim utility

Uπ
xj(px,uxj , C) equals to either the sum of utility from alternatives and the ex ante utility at the next

time step Uπ(f(C)), or the sum of utility from the target mobility service ux1j and the expected ex
post utility EX′|X,P ′

j
Uπ
c (p

′
x, C):

Uπ
xj(px,uxj , C) =

∑
i ̸=1

P (i)[uxij + γUπ(f(C))] + P (i = 1)[ux1j + EX′|X,P ′
j
Uπ
c (p

′
x, C)]

= (1− πxj(px,uxj , C))[ux1̃j + γUπ(f(C))] + πxj(px,uxj , C)[ux1j + EX′|X,P ′
j
Uπ
c (p

′
x, C)],

(8)
where the value ux1̃j is equal to 1

1−P (1)

∑
i̸=1 P (i)uxij and can be interpreted as the expected utility

from taking alternative mobility services. Since we do not have any specific information on each of
alternative i, we assume that the value of ux1̃j is independent from the selection probability of the
target mobility service P (1). Now, if we define the utility gain from taking the target mobility service
uxj = ux1j − ux1̃j , we have

Uπ
xj(px,uxj , C) = (1− πxj(px,uxj , C))γUπ(f(C)) + πxj(px,uxj , C)[uxj + EX′|X,P ′

j
Uπ
c (p

′
x, C)] + ux1̃j ,

(9)
Finally, the ex post utility Uπ

c (p
′
x, C) equals to different ex ante utility at the next time step,

depending on which coupon the traveler selects to redeem:

Uπ
c (p

′
x, C) =

∑
c∈C

πc(c|p′x, C)[r(p′x, c) + γUπ(f(C, c))]. (10)

For notational simplicity, in following discussion we use EX to replace EX|Pj
and EX′ to replace

EX′|X,P ′
j
.

We next show that the above formulation leads to a technical problem and cannot be applied
directly. In fact, we can derive the following corollary by simply replacing the coupon set C in
equations (7), (9) and (10) with the default set C0:

Corollary 1. We have

Uπ(C0) =
1

1− γ
λjEX [ux1̃j + πxj(px,uxj , C0)uxj ]. (11)

The detailed proof is provided in Appendix B. This corollary says that when the time discount
factor γ is closed to 1, the ex ante utility Uπ(C0) depends critically on γ and can be very large.
However, this is often the case in the real world context: for example, if we let the yearly discount
factor be 0.9, the discount factor for a day is then 0.9997. Because the utility gain contributed by
coupon redemption is bounded by finite numbers, e.g., the sum of values of all coupons in the set, the
estimation of coupon impacts, or the difference among Uπ(C) with different C, can be numerically
unstable.

To achieve regularity in formulations and to reduce numerical instability, we simply subtract the
value of Uπ(C0) from every Uπ(C), as illustrated in the following proposition:

Proposition 1. If we define V π(C) as Uπ(C) − Uπ(C0) and V π
c (p′x, C) as Uπ

c (p
′
x, C) − Uπ

c (p
′
x, C0),

we have

V π(C) = γV π(f(C)) + λjEX{
πxj(px,uxj , C)[uxj + EX′|XV π

c (p′x, C)− γV π(f(C))]− πxj(px,uxj , C0)uxj},

V π
c (p′x, C) =

∑
c∈C

πc(c|p′x, C)[r(p′x, c) + γV π(f(C, c))],

V π(C0) = 0.

(12)
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The proof of proposition 1 can be found in Appendix B. The new variable V π(C) can be interpreted
as the net utility gain from the coupon set. In the following discussion, we call V π(C) the “ex ante value
function” and V π

c (p′x, C) the “ex post value function”. As we already tackle the regularity problem
with proposition 1, in the following exposition we always assume γ = 1.

From Equations (7), (9), (10), and (12) it is not hard to derive the form of the optimal policies π∗
c

and π∗
xj

π∗
c (c|p′x, C) = I(c = argmax

c∈C
{r(p′x, c) + V ∗(f(C, c))}),

π∗
xj(ty,uxj , C) = π∗

xj(ty, uxj , C) = I(uxj + EX′|XV ∗
c (p

′
x, C)− V ∗(f(C)) ≥ 0),

(13)

and the corresponding optimal value functions V ∗ and V ∗
c

V ∗
c (p

′
x, C) = max

c∈C
{r(p′x, c) + V ∗(f(C, c))},

V ∗(C) = V ∗(f(C)) + λjEX [max(uxj + EX′|XV ∗
c (p

′
x, C)− V ∗(f(C)), 0)−max(uxj , 0)],

V ∗(C0) = 0,

(14)

where I(·) is the indicator function: I(X) = 1 if and only if the statement X is true.
One more technical problem remains. To compute V ∗ exactly, we need to know parameter λj and

distributions Pj , P
′
j accurately. This is not possible for observers like us; luckily, we can derive lower

and upper bounds of V ∗ as follows.

Proposition 2. Consider

V L(C) = V L(f(C)) + Ex′,p′
x|C0

I(x′ = 1)[V L
c (p′x, C)− V L(f(C))],

V L
c (p′x, C) = max

c∈C
[r(p′x, c) + V L(f(C, c))];

V U (C) = V U (f(C)) + Ex′,p′
x|CI(x

′ = 1)[V U
c (p′x, C)− V U (f(C))],

V U
c (p′x, C) = max

c∈C
[r(p′x, c) + V U (f(C, c))],

(15)

with V L(C0) = V U (C0) = 0 and x′ being the binary indicator of whether there is a trip served by the
target mobility service within the time step. We have V L(C) ≤ V ∗(C) ≤ V U (C) for all C ∈ C.

The proof of proposition 2 can be found in Appendix B. One important property of these ap-
proximations is that λj , Pj , and P ′

j do not show up explicitly in Equation (15). Therefore, we can

approximate V L and V U with the estimation of the joint distribution of x′ and p′x from data. This
leads to the following approximation of V ∗:

V̂ (C) = V̂ (f(C)) + λ̂jEp′
x|P̂j

[V̂c(p
′
x, C)− V̂ (f(C))],

V̂c(p
′
x, C) = max

c∈C
[r(p′x, c) + V̂ (f(C, c))],

V̂ (C0) = 0.

(16)

where λ̂j is the estimated service selection probability P (x′ = 1) and P̂j is the estimated marginal
distribution of fare p′x.

We point out that the formulation (16) is the most natural way to estimate the long-term value of

coupons given only information on λ̂j and P̂j . Therefore, the arduous deductions above mostly provide
a sanity check that the straightforward modeling approach (16) is indeed valid under certain regular
conditions.

Next, we use a simple example to illustrate how we can practically compute V̂ with equation (16).
This method can be generalized to the computation of value functions in equations (14) and (15).
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Example 1. Consider a setting in which the service selection rate is λ̂j = 0.05 and the fare

distribution P̂j can be described as log(p′x) ∼ N(3.15, 0.752). Assume now the traveler has two available
coupons C = {⟨5, 3, 1⟩, ⟨10, 2, 1⟩}.

First, we enumerate all coupon sets that are possible in the future. Under the current simpli-
fied setting, the complete list can be given explicitly: C0, {c0, ⟨5, 1, 1⟩}, {c0, ⟨5, 2, 1⟩}, {c0, ⟨10, 1, 1⟩},
{c0, ⟨5, 2, 1⟩, ⟨10, 1, 1⟩}.

Next, we compute V̂ (C ′) for each possible C ′. We begin with C ′ = {c0, ⟨5, 1, 1⟩}; since f(C ′) = C0,
with equation (16) we have

V̂c(p
′
x, C

′) = max
c∈C′

r(p′x, c) = min(p′x, 5),

V̂ (C ′) = λ̂jEp′
x|P̂j

V̂c(p
′
x, C) = 0.05Ep′

x∼N(3.15,0.752) min(p′x, 5),
(17)

where the expectation in the second equation can then be computed numerically by sampling methods.
Usually, direct sampling with 1,000 samples are enough for a good accuracy, but one can use more
advanced methods such as importance sampling to improve computation efficiency. Similarly, we can
compute C ′ = {c0, ⟨10, 1, 1⟩} directly.

Then, we illustrate how to compute C ′ = {c0, ⟨5, 2, 1⟩}. We first notice that value V̂ (f(C ′)) =
V̂ ({c0, ⟨5, 1, 1⟩}) is already available according to the above computations. We now apply equation
(16) again and have

V̂c(p
′
x, C

′) = max(min(p′x, 5), V̂ (f(C ′))),

V̂ (C ′) = V̂ (f(C ′)) + λ̂jEp′
x|P̂j

[V̂c(p
′
x, C)− V̂ (f(C ′))]

= V̂ (f(C ′)) + 0.05Ep′
x∼N(3.15,0.752) max(min(p′x, 5)− V̂ (f(C ′)), 0),

(18)

which can then be evaluated by sampling methods.
Finally, one can notice that by using the same approach, we can compute the value of V (C) by

sampling methods when we know the value V (f(C, c)) for every c ∈ C. Since the transition f is
unidirectional in time, this method is always feasible by backward deduction. □

The next example shows that when coupons have small promotional effects on the service selection
rate P (x′ = 1) (e.g., the utility gain from coupons EX′|XV ∗

c (p
′
x, C)− V ∗(f(C)) is much smaller than

the utility gain from trips uxj), bounds V
L and V U are close to each other and therefore V̂ is a fairly

accurate approximation.
Example 2. Consider a setting in which the default service selection rate P (x′ = 1|C0) = 0.05,

the derivative of the service selection rate with respect to the coupon value ∂
∂V P (x′ = 1) = 0.01,

and the fare distribution log(p′x) ∼ N(3.15, 0.752). Suppose now the traveler has a set of coupons
C = {c0, ⟨10, 30, 2⟩, ⟨10, 15, 1⟩, ⟨5, 20, 1⟩, ⟨20, 5, 1⟩}.

Figure 2 shows the estimated value functions: the subfigure (a) shows the traveler’s value functions
V U (f (T )(C)) and V L(f (T )(C)) with respect to time T and the coupon set C; the subfigure (b) shows
the differences in value functions ∆V = V (f (T )(C))− V (f (T−1)(f(C, c))) with respect to the coupon
group c = ⟨10, 30, 2⟩ for both V L and V U . From both subfigures, we can see that the gap between the
upper bound and the lower bound is small. □

Before ending this subsection we point out another implication of equation (15) on the error struc-
ture in estimations of the traveler’s coupon selection behavior. If we assume rationality from the
traveler, the coupon choice probability P (c|p′x, C), from the perspective of the observer, is

P (c|p′x, C) = EV |DI(c = argmax
c∈C

{r(p′x, c) + V (f(C, c))}), (19)

where V is estimates of the optimal value function V ∗ given data D. In specifying the error structure
of V , people usually assume the additive separability V = V̂ + εV , and that εV is normally distributed
(probit model) or follows Gumbel (Type-I extreme) distribution (logit model). The major reason for
such choices is to obtain tractable analytic forms of the choice probability P (c|p′x, C). However, because
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Figure 2: Value function approximations

Mar 1st Apr 1st May 1st Jun 1st Jul 1st
9.0

9.2

9.4

9.6

9.8

10.0
log(users/10)
log(orders)

Figure 3: Daily order volume and number of registered travelers

in our model the value V has both an upper bound V U and a lower bound V L, our specification of εV
should have bounded support. Specifications with probit or logit models can lead to erroneous results.

4 Data and Observations

4.1 Data description

Our data comes from a car-sharing service in Shanghai, China and is collected during the period from
January 2017 to July 2017. The dataset includes activities from 0.16 million registered travelers and
contains more than 1.5 million trip records. Figure 3 shows that both the daily order volume and
the number of registered travelers increased steadily during the period, but the daily order volume
per traveler exhibited significant changes in its pattern on April 1st and June 10th. Such changes are
due to external events including the announcement of a new pricing scheme and summer holidays.
Since these external events potentially result in changes of traveler behavior, to avoid estimation bias
we focus on the stable period from April 2017 to June 2017 in the discussion below. We notice that
the stability of operation during the concerned period indicates that there is no significant change in
the operations of alternative travel modes and traveler’s preference of the target mobility service, and
partly justifies our previous assumptions 5 and 6.

From part (a) of Figure 4 we can see that most of the registered travelers are infrequent users of
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Figure 4: Distribution of major statistics

the car-sharing service: more than 80% of them use the service less than once a week. Therefore, for
most travelers, the temporal correlation of trips between consecutive days is weak, and our choice of
time step size (1 day) is acceptable.

Next, we briefly introduce the coupon distribution mechanism adopted by this car-sharing service
during the period from April 2017 to June 2017. Recall that we only model the impact of coupons in
general forms in previous sections; however, the specific coupon distribution and redemption process
can influence how travelers perceive the existence of coupons and therefore shape the distribution of
the observed data.

First, when the operator wants to give a traveler j a coupon c̃, she adds this coupon into the
traveler’s e-wallet at the server side. Later, when the traveler opens or refreshes her app, the app
communicates with the remote server and updates the local e-wallet record. However, this update
information does not pop up automatically on the main screen.

Secondly, during the trip requesting stage, the coupon information, such as how many coupons the
traveler has currently, does not show up automatically, although the traveler can check her e-wallet at
any time. The traveler is able to redeem a coupon only when she finishes a trip and is in the payment
stage; however, coupon redemption is not made a default option, and to redeem a coupon the traveler
has to open her e-wallet from the payment panel and make an explicit selection. All these interaction
designs make the coupon redemption process less obvious for the travelers.

During the concerned period, all the coupons distributed by the service operator are of the same
type: each coupon can be used freely before expiration and can reduce the trip fare by at most its face
value. This is in accordance with assumption 1. Moreover, there are only four distinct face values: 5,
10, 20, and 30. The valid period of a coupon can be as short as 3 days or as long as 90 days.

Finally, the operator does not employ any sophisticated coupon distribution strategy during the
concerned period. The operation team distributes coupons manually and the pattern is highly un-
predictable due to a changing budget constraint. Moreover, this coupon distribution process does not
differentiate between frequent and infrequent travelers. Therefore, the arrival of coupons can be viewed
as a random exogenous event and we do not consider it in our model.

4.2 Data processing

The raw dataset consists of order and coupon records: each order record consists of details of a trip
completed via the car-sharing service, and each coupon record includes a coupon’s face value, start
date, expiration date, and corresponding traveler. Table 1 summarizes the data fields used in our
study.

This raw dataset is processed for the subsequent coupon selection analysis. The processed dataset
consists of three categories of features: trip details, including realized fare p′x and redeemed coupon c̃
(along with its coupon group c); coupon details, including available coupon set C and coupon attention
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Type Fields

Order
order ID, (encrypted) traveler ID, trip start time, trip end time,

fare, used coupon ID, payment

Coupon coupon ID, (encrypted) traveler ID, coupon face value, start time, expire time

Table 1: Data fields

state Ia (which will be discussed in next subsection); and traveler-specific details, including average

daily trip frequency with the car-sharing service λ̂, and average and standard deviation of the logarithm
of the trip fares µ̂p, σ̂p. The latter two are used to construct the empirical marginal distribution of trip

fare P̂j : log(p
′
x) ∼ N(µ̂pj , σ̂

2
pj). We choose the log-normal distribution because it adequately matches

the empirical distribution of trip fares, as shown in part (b) of Figure 4 (the fare details are removed
from this figure per request of the service operator). The available coupon set C for each trip order
is recovered from the coupon records. More specifically, we track the life cycle of each coupon c̃ and
append it to the set C when it is still alive.

Because our major concern in this study is the coupon selection behavior, we remove records in
which the coupon set is empty (C = C0). The final dataset on coupon selection contains more than
0.36 million records and approximately 0.08 million of them have only one coupon in the set C. As a
reference, the dataset constructed from all available data contains more than 0.9 million records and
0.23 million of them have only one coupon in C.

4.3 Observations on the coupon redemption behavior

In this subsection, we discuss several observations from the coupon selection data and introduce a few
hypotheses for explanations.

First, consider the case in which the traveler has only one coupon. On one hand, from equation
(14) we know that the optimal value V ∗ is upper bounded by v. So if p′x ≥ v and there are temporal
discounting effects, the expected value from future redemption is strictly smaller than the value of
immediate redemption, v, and a utility-maximizing traveler should always redeem the coupon. On the
other hand, the observed coupon redemption ratio when p′x ≥ v is consistently lower than 1, as shown
in Figure 5. In Figure 5, we group data with different p′x/v with a granularity of 0.2 and each point on
the curve represents the statistics of the data from the group on its left: for example, point at p′x/v = 1
and v = 5 represents statistics for all data with 0.8 ≤ p′x/v < 1, v = 5, and point at p′x/v = 1.2 and
v = 10 summarize statistics for all data with 1 ≤ p′x/v < 1.2, v = 10, etc.
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Figure 5: Ratio of coupon redemption v.s. fare-value ratio, cases with only one coupon

Next, we consider the case in which there is a coupon ⟨v, T ⟩ in the available coupon set C such
that the trip fare p′x satisfies p′x ≥ v. By the same argument as above, we expect to observe that the
coupon redemption ratio equals to 1 in this case. However, this is not true for the observed data,
as shown in Figure 6. Figure 6 shows the relationship between the coupon quantity and the coupon
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redemption ratio of the observed data. From part (a), we can see that the coupon redemption ratio is
consistently below 1. Nevertheless, this gap diminishes as the coupon quantity increases. From part
(b-c) we further observe that traveler specific factors such as past experiences and trip frequencies also
have strong impacts on the coupon redemption ratio.
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Figure 6: Ratio of coupon redemption v.s. coupon quantity, cases in which some coupon face values v
exceed fare p′x

Now, we introduce several hypotheses to explain the above observations. We limit our attention
to approaches in two directions: either to relax the optimality assumption or to examine and redefine
the decision problem that the traveler optimizes.

We point out that the deviation from optimality in the cases with only one coupon greatly limits
our choices in the first direction. In situations that the traveler has only one coupon, the traveler is con-
fronted with much easier decision problems compared with general cases. Models on the computation
complexity of the decision problem, such as those on bounded rationalities or deliberate attention, then
imply that decisions in the cases with only one coupon are more likely to follow the optimal decision
π∗. However, above observations show that the deviation is the greatest in this setting.

One possible option in this direction is to consider near-optimal stochastic policies, such as the
entropy-regularized optimal policy πH [40]

πH,c(c|p′x, C) ∝ exp[r(p′x, c) + V πH (f(C, c))]. (20)

Clearly stochastic policies such as πH can explain a coupon redemption ratio below 1 when we have
p′x ≥ v. However, coupon redemption ratios from such policies are sensitive to the coupon value v, at
least in the cases with only one coupon. We can illustrate the intuition of this claim by looking at
equation (32): given the same λ̂j , P̂j and T , one can show by induction on T that the gap between v and

V̂ (v, T ) increases monotonically as v increases. Therefore, the redemption ratio under the condition
p′x/v ≥ 1 should also increase monotonically with v. However, this is not fully consistent with our
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observations in Figure 5: the redemption ratio under v = 30 is not significantly greater than the one
under v = 20.

We can follow the discussion above and keep searching for the “correct” policy; however, in this
process we need to make more assumptions and the generalization power of our results diminishes.

Next, we consider approaches in the second direction: the decision problem faced by the traveler is
different from the one in our model. For our specific problem of coupon selections, we further assume
that such difference comes from the knowledge of the available coupon set C. As discussed in previous
sections, the operator does not provide much information about the arrival of coupons, so there are
possibilities that the traveler has only partial knowledge of C.

To identify variables that capture the traveler’s knowledge of C, we recall that a traveler can
be aware of a coupon c̃ only when she opens her e-wallet during the coupon’s life cycle. Since one
motivation of such action is to use a coupon for payment, we consider the following variable: “activation
record” Ia(c̃) ∈ {0, 1} of coupon c̃, which equals to 1 if and only if there is a past realized trip, after
which the traveler selected a coupon c̃′ ̸= c̃ for payment and coupon c̃ was in the e-wallet at that time.

We now examine explanation power of Ia on the aforementioned deviations. Figure 7 shows the
relationship between p′x/v and the coupon redemption ratio in cases that the traveler has only one
coupon c̃ and the coupon satisfies Ia(c̃) = 1. Figure 8 shows the relationship between the coupon
quantity and the coupon redemption ratio in cases that there is a coupon c̃ = ⟨v, T ⟩ in the available
coupon set C such that the trip fare p′x satisfies p′x ≥ v and Ia(c̃) = 1. From both figures, we can
see that the coupon redemption ratio becomes much closer to 1 when we impose the restriction on
Ia. Moreover, part (b-c) of Figure 8 indicates that the impact of past experience and trip frequency
diminishes under the same restriction.
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Figure 7: Ratio of coupon redemption v.s. fare-value ratio, cases with only one coupon, Ia(c̃) = 1
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Figure 8: Ratio of coupon redemption, cases in which some coupon face values v exceed fare p′x and
Ia(c̃) = 1

5 Model with Unawareness

In this section, we formalize the notion of unawareness. The basic idea is that travelers, influenced by
external circumstances and internal limited memories, may make decisions with respect to a perceived
(awareness) subset Ca rather than the whole coupon set C.

5.1 Model formulation

If a traveler is only aware of the subset Ca and make decisions with respect to it, it is unlikely that
the traveler concerns about the unawareness itself. This suggests the following assumption:

Assumption 11. The traveler does not consider her unawareness of the set of available coupons in
evaluating future coupon redemption values. Therefore, This evaluation is the same as in the baseline
model.

With this assumption, in following discussions we can consider the same policies πxj and πc as
those developed in Section 3.

Next, we discuss the impact of unawareness on decisions under the setting in which traveler j has
an available coupon set C. Because unawarenesses in different periods are correlated, we introduce a
new state variable Sa for it. After each trip with the target mobility service, this state Sa is updated
with the available coupon set C and the selected coupon group c, according to a function fa:

S′
a = fa(Sa, C, c). (21)

At the beginning of a trip, the awareness set Ca is generated according to the state of attention
Sa and a distribution Pa: P (Ca) = Pa(Ca|C, Sa). Given X and Ca, the traveler selects a travel mode
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according to πxj :
P (i = 1) = πxj(px,uxj , Ca). (22)

If the traveler completes the trip via the mobility service, detail of the realized trip X ′ is revealed
according to X ′ ∼ P ′

j(·|X) and the traveler selects a coupon for redemption given the realized trip fare
p′x. However, with unawareness, the coupon selection behavior is complicated and can be described
in two steps. First, the traveler makes a choice c with respect to the awareness set Ca according to
the probability πc(c|p′x, Ca). Then, if there is no coupon redemption (c = c0), the traveler proceeds to
payment; otherwise (c ̸= c0), the traveler must open her e-wallet. In this case, she will find that she
has the whole coupon set C; we call this situation attention recovery. She then re-evaluates and makes
her final decision with respect to set C/C0.

Here, the default option c0 is removed from the final consideration set for regularity. In fact, if
the traveler is aware of all coupons Ca = C, the re-evaluation should have no effect on the coupon
selection probabilities. However, if c0 is included in the final consideration set, the probability of
having no coupon redemption increases and differs from πc(c0|p′x, C).

In summary, the probability of selecting coupon group c is

P (c|p′x, Ca) =

{
πc(c0|p′x, Ca) c = c0

πc(c|p′x, C/C0)(1− πc(c0|p′x, Ca)) otherwise
(23)

Now, if the traveler follows the utility-maximizing policy π∗, the coupon selection probability from
the perspective of the observer can be expressed as

P (c|p′x, C, Sa) =
∑

Ca∈A(C)

Pa(Ca|C,Sa)P (c|p′x, Ca)

P (c0|p′x, Ca) = EV |DI(c0 = arg max
c∈Ca

{r(p′x, c) + V (f(Ca, c))})

P (c|p′x, Ca) = EV |DI(c0 ̸= arg max
c∈Ca

{r(p′x, c) + V (f(Ca, c))})

· I(c = arg max
c∈C/C0

{r(p′x, c) + V (f(C, c))}).

(24)

5.2 Specification of the inattention mechanism

In this subsection, we specify the form of the state of attention Sa and the awareness set probability
function Pa.

First, from the state transition of Sa we see that Sa can be interpreted as a function of coupon set
C. However, this function space is too large to be considered practically: we need to consider every
possible correlation among coupon groups. Here, we restrict our attention to the coupon-group-level
features. That is, we can interpret Sa as a function from coupon groups c to features Sa(c) related
only to that coupon group.

Next, we specify the awareness set probability Pa(Ca|C, Sa). We first look at the special case that
there is only one available coupon C = {c, c0}, with c = ⟨v, T, 1⟩. In this case, the only difference
between the two possible outcomes, C and C0, is whether the traveler notices the coupon c̃ = ⟨v, T ⟩.
Thus we can say

Pa(C|C, Sa) = σ(h(Sa(c))), Pa(C0|C,Sa) = 1− σ(h(Sa(c))), (25)

where σ is the sigmoid function σ(x) = 1/(1 + e−x) and h is a function. A natural choice of h is the
linear functions h(x) = θTx+ b, where θ, b are parameters.

For the form of Pa(Ca|C, Sa) in general, there are much more choices: in Subsection 2.2 we have
mentioned several of them. Here, we adopt the Manski model [27] which assumes that awarenesses of
different elements in the set are independent of each other. Nevertheless, the word “element” is still
ambiguous: we can consider independence at either the coupon-level or the coupon-group-level. We
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now make a detailed discussion on this choice. For coupon-group-level independence, the awareness
set Ca can only be a subset of C

Pa(Ca|C, Sa) =
∏
c∈Ca

σ(h(Sa(c))) ·
∏

c∈C/Ca

(1− σ(h(Sa(c)))); (26)

while for the coupon-level independence, the coupon groups in Ca can be different from those in
C and the quantity in each coupon group is important. To further explain this, let us abuse the
notation of set and consider C = {c1, · · · , cm} and Ca = {cai |i ∈ Ia}, with ci = ⟨vi, Ti, ni⟩ and
cai = ⟨vi, Ti, n

a
i ⟩, 0 ≤ na

i ≤ ni. (We say this is an abuse of notation since if na
i = 0, cai is not an element

of Ca.) Now the coupon-level independence leads to

Pa(Ca|C, Sa) =
m∏
i=1

(
ni

na
i

)
[σ(h(Sa(ci)))]

na
i [(1− σ(h(Sa(ci))))]

ni−na
i . (27)

At first sight, the coupon-group-level-independence formulation seems to be more straightforward.
However, for it to make any sense, the quantity of coupon group nmust become one of the features in Sa

and has direct impact on the awareness level h(Sa(c)); otherwise, the awareness level remains the same
even when we increase n towards infinity. But now the specification of the relationship between n and
h(Sa(c)) becomes another problem. To avoid this problem, we choose the coupon-level-independence
formulation instead, which provide a simple characterization of the impacts of ni.

At the end of this subsection, we discuss which feature to be included in Sa(c). A natural selection
is the variable Ia(c̃) which represents whether the traveler has previously seen coupon c̃. This function
can be defined at the coupon-group level because coupons in the same group are distributed at the
same time and should be seen at once. However, from Figure 7 and 8 it is shown that the feature
Ia(c̃) cannot fully capture the inattention effect. Therefore, we add a new parameter θa to capture the
remaining possibilities, such as that the traveler may forget the existence of coupons as time passes:

Sa(c) = Ia(c),

h(Sa(c)) = θa + θasIa(c),
(28)

where θa, θas are parameters.
Finally, for completeness, we provide the formulation of the state transition function fa

fa(Sa, C, c)(fc(c
′)) =

{
0 c = c0 & fc(c

′) ̸= c0 & Sa(c
′) = 0

1 otherwise
, ∀c′ ∈ C/{c} ∪ {⟨v, T, n− 1⟩}. (29)

6 Estimation Results

In this section, we focus on the model estimations given travelers’ coupon selection behavior dataset
{(c1, p′x1, C1, Sa1, λ̂1, µ̂p1, σ̂p1), · · · , (cN , p′xN , CN , SaN , λ̂N , µ̂pN , σ̂pN )}. As mentioned in Section 4, we
focus on the data obtained during the period from April 2017 to June 2017. Estimations on the whole
dataset are provided in Appendix D for reference.

Recall from Equation (24) that the coupon selection probability P (c|p′x, C, Sa) is a mixture

P (c|p′x, C, Sa) =
∑

Ca∈A(C)

Pa(Ca|C, Sa)P (c|p′x, Ca), (30)

where the awareness set probability Pa(Ca|C, Sa) is specified in Equations (27) and (28). If we are
further given a parametric form of P (c|p′x, Ca), we can estimate parameters θ in both models by
maximizing the (average) log-likelihood of the model on the dataset:

Log-Likelihood =
1

N

N∑
l=1

logP (cl|p′xl, Cl, Sal). (31)
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Concerning about the size of our dataset and the complexity of our models, we use TensorFlow
to construct the computation graph of these models and the Adam algorithm [24] to optimize the
log-likelihood. Other hyper-parameters for training are summarized in Table 2. In the estimation, the
maximal training time for a model is less than an hour.

Parameter Value

learning rate 0.001

mini-batch size 256

training epochs 50

Table 2: Hyper-parameters for training

Next, we discuss estimation results of various forms of P (c|p′x, Ca). We start with estimations in
cases with only one coupon.

6.1 Cases with only one coupon

When there is only one coupon, the available coupon set C can be expressed as {⟨v, T, 1⟩, c0}, and we
can simplify the notation of coupon c = ⟨v, T, 1⟩ with ⟨v, T ⟩ and that of value function V ({⟨v, T, 1⟩, c0})
with V (v, T ). The value function V̂ in equation (16) can now be computed in a simpler way

V̂ (v, T ) = V̂ (v, T − 1) + λ̂jEp′
x|P̂j

max{min(p′x, v)− V̂ (v, T − 1), 0}

V̂ (v, T ) = 0, ∀ T < 0 or v = 0.
(32)

Since in the cases with only one coupon the awareness set Ca can only be either C or C0, we
remain to specify the form of P (c|p′x, C). With some calculations we can show that P (c|p′x, C) =
EV |DI(min(p′x, v) ≥ V (v, T − 1)); since this probability only depends on v, T and p′x, we can denote it
as P (v, T, p′x) for simplicity.

In specifying P (v, T, p′x), we use approximation V̂ in Equation (32) as a feature for the optimal value
function V . In particular, we consider an estimation with its error following the logistic distribution
V (v, T ) = θV V̂ (v, T ) + εV , εV ∼ Logistic(0, 1/θε). With this specification, we have

P (v, T, p′x) = σ(θε[min(p′x, v)− θV V̂ (v, T − 1)]), (33)

where σ is the sigmoid function. One can notice that this form of selection probabilities resembles the
one from the “near-optimal stochastic policies” in equation (20). This specification is called the “basic
specification” in the following discussion.

The basic specification can be extended in several directions. First, in the basic specification
we assume that the error εV is independent from the face value v. Therefore, we have the same
estimation variance in the value of a coupon with v = 30 as in the value of a coupon with v = 5.
We can introduce the correlation between εV and v by scaling εV with v: V (v, T ) = θV V̂ (v, T ) +
vεV , εV ∼ Logistic(0, 1/θε). This extension is called “scaled” and leads to the following coupon
selection probability

P (v, T, p′x) = σ(θε[min(p′x, v)/v − θV V̂ (v, T − 1)/v]). (34)

Second, when the traveler exhibits bounded rationalities, V̂ may not provide an accurate estimation.
Therefore, we include the face value v as an extra feature in our estimation: V (v, T ) = θV V̂ (v, T ) +
θvv + εV , εV ∼ Logistic(0, 1/θε). This extension is called “extra” and leads to the following coupon
selection probability

P (v, T, p′x) = σ(θε[min(p′x, v)− θV V̂ (v, T − 1)− θvv]). (35)
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Finally, as discussed in Section 3, the true optimal value V ∗ is always bounded by finite values.
Therefore, we consider to regularize the estimate by clipping: V (v, T ) = max{0,min{v, θV V̂ (v, T ) +
εV }}, εV ∼ Logistic(0, 1/θε). This extension is called “clip” and leads to the following coupon selection
probability

P (v, T, p′x) =

{
σ(θε[min(p′x, v)− θV V̂ (v, T − 1)]) p′x < v,

1 otherwise.
(36)

These extensions are orthogonal and can be combined with one another. In total, we can obtain
eight different models. Table 3 summarizes the estimated parameters and the performance of these
models. In this table, the numbers are reported up to three digits after the decimal point, and 0/1
are used to denote False/True and indicate whether a condition is met. “LL” refers to the (average)
log-likelihood. “Accuracy” refers to the forecasting accuracy and is computed as

Accuracy =
1

N

N∑
l=1

I(cl = argmax
c∈Cl

P (c|p′xl, Cl, Sal)), (37)

“MS” refers to the predicted aggregate coupon redemption ratio (the “market share” of coupon re-
demption) and is computed as

MS = 1− 1

N

N∑
l=1

P (c0|p′xl, Cl, Sal); (38)

for Table 3, the observed aggregate coupon redemption ratio is 0.719.

Inattention Utility Model and Extensions Evaluation

Unaware? θa θas Clip? Extra? Scaled? θε θV θv LL Accuracy MS

0 N/A N/A 0 0 0 0.088 0.620 N/A -0.543 0.758 0.719
0 N/A N/A 0 1 0 0.177 0.128 0.532 -0.513 0.781 0.701
0 N/A N/A 0 0 1 1.926 0.513 N/A -0.535 0.751 0.746
0 N/A N/A 0 1 1 3.455 0.154 0.480 -0.508 0.782 0.721

1 1.025 1.850 0 0 0 0.369 0.743 N/A -0.491 0.780 0.714
1 1.183 2.116 0 1 0 0.358 0.439 0.274 -0.479 0.788 0.707
1 1.205 3.868 0 0 1 4.272 0.652 N/A -0.491 0.777 0.730
1 1.368 4.741 0 1 1 5.060 0.387 0.281 -0.478 0.787 0.720

1 1.047 1.450 1 0 0 0.224 0.826 N/A -0.479 0.785 0.719
1 1.096 1.427 1 1 0 0.283 0.536 0.228 -0.474 0.789 0.713
1 1.080 1.449 1 0 1 4.113 0.797 N/A -0.480 0.787 0.723
1 1.122 1.436 1 1 1 4.860 0.568 0.188 -0.476 0.790 0.718

Table 3: Estimated parameters and performance in the case with only one coupon

Coupon face value 5 10 20 30

Occurrence 2032 3319 50999 21425

Table 4: Occurrence of records with specific face value of the coupon, in the case with only one coupon

Direct estimation of models on the raw dataset can lead to bias, because our dataset is unbalanced
with respect to the coupon face value v, as shown in Table 4. As v is an exogenous variable and
the model should not be biased toward any of its specific values, we use weights to rebalance the
importance of each data record. In particular, we give weight w = N/N(v) to records with coupon
face value v, where N(v) is the occurrence of records with their coupon face values equaling to v. The
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weighted log-likelihood, accuracy, and aggregate coupon redemption ratio are respectively given as

Weighted Log-Likelihood =
N∑
l=1

1

N(vl)
logP (cl|p′xl, Cl, Sal),

Weighted Accuracy =

N∑
l=1

1

N(vl)
I(cl = argmax

c∈Cl

P (c|p′xl, Cl, Sal)),

Weighted MS =

N∑
l=1

1

N(vl)
(1− P (c0|p′xl, Cl, Sal)),

(39)

where vl is the face value of the only coupon in Cl. Table 5 summarizes the estimation results with
weighting. For this table, the weighted observed aggregate coupon redemption ratio is 0.715.

Inattention Utility Model and Extensions Evaluation

Unaware? θa θas Clip? Extra? Scaled? θε θV θv LL Accuracy MS

0 N/A N/A 0 0 0 0.094 0.494 N/A -0.588 0.739 0.680
0 N/A N/A 0 1 0 0.196 0.034 0.576 -0.558 0.761 0.672
0 N/A N/A 0 0 1 1.902 0.454 N/A -0.555 0.735 0.744
0 N/A N/A 0 1 1 2.654 0.195 0.376 -0.541 0.759 0.729

1 0.711 1.632 0 0 0 0.973 0.679 N/A -0.515 0.761 0.714
1 0.804 1.766 0 1 0 0.780 0.442 0.212 -0.508 0.766 0.706
1 0.888 2.814 0 0 1 5.557 0.662 N/A -0.495 0.766 0.731
1 0.983 3.134 0 1 1 6.415 0.396 0.291 -0.487 0.772 0.724

1 0.711 1.594 1 0 0 0.267 0.810 N/A -0.493 0.770 0.726
1 0.736 1.584 1 1 0 0.311 0.566 0.194 -0.491 0.773 0.723
1 0.743 1.591 1 0 1 3.991 0.775 N/A -0.496 0.773 0.728
1 0.760 1.587 1 1 1 4.505 0.602 0.148 -0.494 0.773 0.726

Table 5: Estimated parameters and performance in the case with only one coupon and reweighting

According to Tables 3 and 5, we have several findings:

1. In general, models with inattention have much better log-likelihood than their counterparts.
They also have slightly better prediction accuracies.

2. Regularizing value function V by clipping does not lead to significant improvement in the log-
likelihood or the accuracy. However, the estimated parameters of the inattention model are more
stable across different specifications on the utility model.

3. Including extra feature v in the value estimation leads to improvements in the log-likelihood and
the accuracy, but the improvement diminishes as the model becomes more sophisticated. When
both the inattention mechanism and the value function regularization by clipping are presented
in the model, the improvement is almost insignificant.

4. Contrary to our intuition, introducing scaling in the error structure does not lead any significant
improvement. Rather, it leads to instability in parameter estimations.

5. For all models, the estimated θV is smaller than 1. This outcome can possibly be explained by
the existence of complementary behavioral mechanisms, such as temporal discounting.

6. The forecasted aggregate coupon redemption ratio is more stable and closer to the observed one
under the unawareness models. However, the difference between models is not very large.

Next, we examine the estimation results in general cases to determine whether the above findings
can be generalized.
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6.2 General cases

The coupon selection probability on awareness set in general cases is given in Equation (24) as

P (c0|p′x, Ca) = EV |DI(c0 = arg max
c∈Ca

{r(p′x, c) + V (f(Ca, c))}),

P (c|px, Ca) = EV |DI(c0 ̸= arg max
c∈Ca

{r(p′x, c) + V (f(Ca, c))})

· I(c = arg max
c∈C/C0

{r(p′x, c) + V (f(C, c))})

≈ EV |DI(c0 ̸= arg max
c∈Ca

{r(p′x, c) + V (f(Ca, c))})

· EV |DI(c = arg max
c∈C/C0

{r(p′x, c) + V (f(C, c))}).

(40)

Again, we want to find specifications of V with the approximation V̂ from equation (16) and an
error term εV such that the above probabilities have tractable forms. One straightforward solution is
to consider

εV (C) = ε̃V (C)− ε̃V (C0), ε̃V ∼ Gumbel(0, 1/θε) i.i.d.;

V (C) = θV V̂ (C) + εV (C),
(41)

where we subtract ε̃V (C0) for regularity: V (C0) ≡ 0. Notice that this specification is consistent
with the one in the case with only one coupon. Now, the coupon selection probability follows the
multinomial logit model

EV |DI(c = argmax
c∈C

{r(p′x, c) + V (f(C, c))}) ∝ exp(θε[r(p
′
x, c) + θV V̂ (f(C, c))]). (42)

Next, we examine the possible extensions of this basic specification. Among the three possibilities
discussed in cases with only one coupon, only the one to include face value v as an extra feature for
estimation V can be extended directly. Scaling εV (f(C, c)) with face value v is trivial in implementation
but lacks justification in intuition because errors εV for different coupon groups c need to be scaled
differently and the overall error structure is broken. Nevertheless, we include it here for comparison.

Clipping the estimation V is difficult to implement because with value clipping the coupon selection
probability does not have an analytic form. Moreover, direct computation by sampling methods is
intractable given the magnitude of our dataset. In this study, we implement an approximation of
clipping, which is consistent with the one in cases with only one coupon: clipping only affects the
probability of choosing no coupon redemption c0. In particular, if there exists a coupon group c with
face value v ≤ p′x, we remove c0 from the consideration set:

P (c|p′x, C) ∝

{
0 c = c0 & ∃⟨v, T, n⟩ ∈ C such that p′x ≥ v > 0,

exp(r(p′x, c) + V̂ (f(C, c))) otherwise.
(43)

In addition to these three extensions, we consider a nontrivial modification of the error structure.
In the current model, coupons that are very similar but not exactly the same are allocated to differ-
ent groups. Therefore, behavior given coupon set {⟨v, T, 1⟩, ⟨v + ϵ, T, 1⟩, c0} will change abruptly as
ϵ → 0. One way to restore the continuity in behavior is to view every coupon as a unique one and
consider independent coupon-level estimation error. That is, for any two coupon c̃1 and c̃2 in the same
group c, the errors in the estimations V (f(C, c)) are independent. This modification leads to another
multinomial logit model

EV |DI(c = argmax
c∈C

{r(p′x, c) + V (f(C, c))}) ∝ n · exp(θε[r(p′x, c) + θV V̂ (f(C, c))]), (44)

where n is the number of coupons in group c. This extension is called “iid”.
Table 6 summarizes the estimated parameters and the performance of models with different com-

binations of the extensions above. As the computational complexity of the inattention model scales
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according to the size of A(C), we limit our attention on records where |A(C)| ≤ 64. Such records
constitute more than 90% of the records in the whole dataset. As a comparison, we also summarize
the estimation results on the dataset where each record has |A(C)| ≤ 16 in Table 7; by calculating the
difference between these two tables we can evaluate the stability in the estimated parameters. The
observed aggregate coupon redemption ratio for Tables 6 and 7 are 0.803 and 0.786, respectively.

Inattention Utility Model and Extensions Evaluation

Unaware? θa θas Clip? Extra? Scaled? iid? θε θV θv LL Accuracy MS

0 N/A N/A 0 0 0 0 0.126 0.873 N/A -0.823 0.747 0.808
0 N/A N/A 0 1 0 0 0.222 0.435 0.411 -0.797 0.753 0.795
0 N/A N/A 0 0 1 0 2.423 0.800 N/A -0.865 0.673 0.816
0 N/A N/A 0 1 1 0 3.931 0.456 0.380 -0.852 0.674 0.798

0 N/A N/A 0 0 0 1 0.134 0.898 N/A -0.889 0.662 0.850
0 N/A N/A 0 1 0 1 0.226 0.482 0.361 -0.866 0.671 0.846
0 N/A N/A 0 0 1 1 2.333 0.995 N/A -0.931 0.614 0.820
0 N/A N/A 0 1 1 1 3.902 0.555 0.396 -0.918 0.620 0.803

1 -0.289 2.689 0 0 0 0 0.332 0.722 N/A -0.713 0.705 0.774
1 -0.268 2.844 0 1 0 0 0.422 0.520 0.216 -0.701 0.709 0.767
1 -0.098 4.309 0 0 1 0 4.810 0.714 N/A -0.808 0.628 0.784
1 -0.050 5.028 0 1 1 0 5.314 0.620 0.118 -0.806 0.629 0.780

1 -0.393 2.358 0 0 0 1 0.388 0.702 N/A -0.750 0.658 0.787
1 -0.374 2.387 0 1 0 1 0.493 0.513 0.185 -0.739 0.662 0.784
1 -0.244 3.890 0 0 1 1 5.256 0.780 N/A -0.860 0.587 0.785
1 -0.215 4.249 0 1 1 1 5.772 0.688 0.107 -0.859 0.587 0.782

1 -0.473 1.625 1 0 0 0 0.367 0.680 N/A -0.727 0.706 0.768
1 -0.441 1.642 1 1 0 0 0.490 0.475 0.205 -0.716 0.709 0.761
1 -0.425 1.682 1 0 1 0 5.120 0.705 N/A -0.833 0.626 0.767
1 -0.430 1.678 1 1 1 0 4.925 0.740 0.039 -0.833 0.627 0.755

1 -0.470 1.585 1 0 0 1 0.413 0.680 N/A -0.757 0.660 0.776
1 -0.438 1.600 1 1 0 1 0.539 0.488 0.182 -0.746 0.664 0.772
1 -0.412 1.674 1 0 1 1 5.238 0.805 N/A -0.873 0.587 0.769
1 -0.415 1.671 1 1 1 1 5.110 0.830 0.025 -0.873 0.587 0.762

Table 6: Estimated parameters and performance on subset |A(C)| ≤ 64

Our findings from these estimation results are outlined as follows:

1. Similar to results in the case with only one coupon, models with inattention have better log-
likelihood. However, now their accuracies are poor. Because our model of inattention only
increases the relative probability of the default option c0, this observation implies that our
inattention model underestimates travelers’ ability to remember. This claim is also supported by
the underestimation of aggregate coupon redemption ratio from unawareness models. Compared
with results from cases with only one coupon, it seems that the prediction accuracy of our
unawareness model drops as the size of the coupon set C increases. This observation will be
useful when we attempt to improve our model in the future.

2. Possibly because of a lack of justification, both scaling εV with v and the approximated clipping
of V lead to poor log-likelihood and low accuracy. We also observe no improvement in the
stability of parameter estimation from value clipping.

3. The extension with independent coupon-level estimation errors is entirely ineffective. Recall that
with this modification, we try to solve the discontinuity problem by introducing heterogeneities
among coupons in a coupon group. In the future, we can go in the opposite direction and consider
homogeneities between coupons from different coupon groups.
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Inattention Utility Model and Extensions Evaluation

Unaware? θa θas Clip? Extra? θε θV θv LL Accuracy MS

0 N/A N/A 0 0 0.120 0.785 N/A -0.774 0.748 0.806
0 N/A N/A 0 1 0.213 0.379 0.423 -0.748 0.756 0.787

1 -0.175 2.830 0 0 0.315 0.706 N/A -0.677 0.699 0.765
1 -0.143 3.013 0 1 0.398 0.504 0.222 -0.666 0.702 0.757

1 -0.364 1.690 1 0 0.343 0.680 N/A -0.690 0.699 0.757
1 -0.331 1.701 1 1 0.461 0.471 0.210 -0.681 0.702 0.749

Table 7: Estimated parameters and performance on subset |A(C)| ≤ 16

4. Including the extra feature v in the value estimation leads to significant improvements in both the
log-likelihood and the prediction accuracy. This outcome can possibly be explained by the lack of
an accurate inattention model or by travelers’ bounded rationality in facing difficult optimization
problems.

5. The estimate of θV is again smaller than 1 for all models, suggesting the existence of comple-
mentary behavioral mechanisms.

6. Finally, estimates in Tables 6 and 7 are close to each other but different from those in Table
3. The difference in the parameters of the inattention model is especially large. This finding
implies that, despite consistency in terms of mathematical forms, the models developed in this
subsection are not natural extensions of the models in cases with only one coupon.

7 Impact of Unawarenesses on Coupons’ Promotional Effects

In this section, we evaluate the impact of unawarenesses on coupons’ promotional effects via simulation.
We first show that why a qualitative analysis of such impact is difficult. Recall that the utility gain
from choosing the mobility service under the optimal mode choice policy π∗

xj is

uxj + EX′|X max
c∈C

{r(p′x, c) + V ∗(f(C, c))− V ∗(f(C))}. (45)

When the traveler is only aware of a subset Ca of available coupons instead of the whole set C, the
opportunity cost V ∗(f(Ca))−V ∗(f(Ca, c)) of using a coupon c̃ from group c becomes larger. According
to equation (45), the traveler is then less likely to use the mobility service. However, unawarenesses
also reduces the rate of coupon redemption and the impact of the coupons can last longer. Moreover,
with the attention recovery in the payment stage, the traveler may select a coupon c̃ costlier to the
operator than any other in Ca. Since all these factors push the promotional effects of coupons in
different directions, the impact of inattention is hard to understand qualitatively.

Next, we simulate the traveler’s decision flow with the models developed in Sections 3 and 5, and
summarize performance metrics including the total trip quantity Ntrip, the total redeemed coupon
value Vredeemed, and the promotional effect

ρ =

∑
(Ntrip −Ntrip,0)∑

Vredeemed
, (46)

where Ntrip,0 is the baseline total trip quantity.
In the simulation, we simplify the trip demand generation and the trip realization processes to

reduce computational burden, by assuming that λj ≡ 1, log(p′x) ≡ log(px) ∼ N(µpj , σ
2
pj), uxj ≡ u0 ∈

R. Under these assumptions, the optimal mode selection policy dictates

P (x′ = 1|Ca, λj , Pj) = I(u0 + max
c∈Ca

{r(px, c) + V ∗(f(Ca, c))− V ∗(f(Ca)}) ≥ 0). (47)
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Again, since we do not know V ∗ exactly, we follow the specifications in Section 6 to use V̂ from
equation (16) as an estimate and assume a logistic estimation error. Now we have

P (x′ = 1|Ca, λj , Pj) = σ(β[u0 + max
c∈Ca

{r(px, c) + V̂ (f(Ca, c))− V̂ (f(Ca))}]), (48)

where σ is the sigmoid function and β is a parameter describing the sensitivity of the service selection
probability to coupon values.

For the coupon selection probability P (c|px, Ca), we specify the same form of πc(c|p′x, Ca) as the
basic specification in Section 6:

πc(c|p′x, Ca) ∝ exp(θε[r(p
′
x, c) + θV V̂ (f(Ca, c))]). (49)

In the experiment, we consider the same setting as in Example 2: fare distribution log(px) ∼
N(3.15, 0.752), and the coupon set C = {c0, ⟨10, 30, 2⟩, ⟨10, 15, 1⟩, ⟨5, 20, 1⟩, ⟨20, 5, 1⟩}. For a compre-
hensive evaluation, we consider various combinations of the default mode selection rate λ0 = σ(βu0)
and the coupon value sensitivity β. For parameters in the inattention and coupon selection models, we
choose θas = 1.5, θa = −0.5, θε = 0.5, which are close to the estimations in Section 6. We also assume
that all coupons are activated; that is, Sa(c) = 1 for all c ∈ C.

For evaluation, we simulate each (λ0, β) case with Tmax = maxc T = 30 steps and for 250,000
times. Table 8 presents the simulation results and shows that models with inattention indeed lead to
lower promotional effect ρ than their counterparts; in fact, the reduction in ρ can be as great as 10%.
In Table 8, the default trip quantity Ntrip,0 can be calculated with λ0Tmax.

Inattention
Ntrip Vredeemed ρ

mean std mean std

λ0 = 0.05, β = 0.01; Ntrip,0 = 1.5

0 1.638 1.231 17.52 13.20 0.0079
1 1.619 1.223 16.43 12.78 0.0072

λ0 = 0.05, β = 0.05; Ntrip,0 = 1.5

0 2.315 1.350 25.27 14.33 0.0322
1 2.189 1.335 22.91 13.98 0.0301

λ0 = 0.2, β = 0.01; Ntrip,0 = 6

0 6.152 2.166 43.45 11.90 0.0035
1 6.119 2.172 40.28 12.78 0.0030

λ0 = 0.2, β = 0.05; Ntrip,0 = 6

0 6.718 2.054 47.70 9.83 0.0151
1 6.588 2.102 44.06 11.41 0.0134

Table 8: Simulation results of coupons’ promotional effects

8 Discussion and Conclusion

In this paper, we proposed an inattention mechanism on unawareness to explain the observed deviation
of traveler coupon redemption behavior from utility-maximization and estimation results in Section
6 shows that our model indeed leads to a better fit of the dataset compared with baseline models.
Moreover, our simulation experiment in Section 7 shows that if such unawareness exists, it can lead to
a considerable reduction in the promotional effects of coupons. Therefore, a service operator should be
aware of travelers’ unawarenesses and take necessary actions. For example, when distributing coupons,
the operator should send notifications to travelers to ensure that they are properly incentivized. More-
over, when a traveler’s forgetfulness is unavoidable, the operator should include the probability of
coupon unawareness in the design of coupon distribution strategies.

The model developed in this study has several limitations worthy of further exploration. First, we
did not obtain consistent parameter estimates of the inattention model between the case with only
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one coupon and general cases. We speculate that the independent coupon-level inattention mechanism
employed here is inappropriate. In addition, our consideration of attention state Sa and transition fa
is restricted to the first activation event Ia. In the future, we can include more information in Sa, such
as the time from the most recent activation of each coupon, and consider more complicated transition
dynamics fa, such as the Hawkes process or even recurrent neural networks.

Second, we focused on the impact of unawareness in this study, but travelers may also exhibit
deliberate attention. In fact, our model of coupon groups dictates a nested consideration structure
similar to the one in the classic nested logit model [7]. However, as mentioned in Section 6, this nested
structure violates regularities because it imposes strong correlations among coupons in the same group
but requires independence of coupons from different groups even when these coupons are very similar.
In the future, we can employ existing works on consideration sets to develop models that are effective
in capturing travelers’ perceived homogeneity among coupons.

Third, given the limitations in computational power, we failed to extend the value clipping regu-
larization to general cases, and our simple approximation was shown to be ineffective. Further work
in developing tractable estimation algorithms of this model is needed.

Finally, our estimation results show that even after we take the impact of unawareness into account,
traveler behavior still deviates from utility-maximization decisions. However, it is questionable whether
there are alternative decision mechanisms that are both theoretically justifiable and computationally
tractable.
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A Appendix

A.1 Value functions in general cases

In general situations, assumption 2 does not hold. In this section, we derive value functions for
both discrete time settings with general time unit t0 and continuous time setting. We also show the
equivalence between the two as the time unit t0 diminishes to 0.

First, consider unit time trip generation rate λ̄j : in discrete time settings with a time unit t0, the
trip generation probability in each time step is λ̄jt0, while in continuous time setting, the time gap δt
between consecutive trips follows the exponential distribution δt ∼ Exp(1/λ̄j).

When assumption 2 does not hold, we need to consider state transition of coupon sets with respect
to a variety of time periods. Therefore, we consider the following generalization of coupon state
transition function f :

f(C, c, t) = f2(f1(C, t), c)

f1(C, t) = {fc(c)|c ∈ C}

fc(⟨v, T, n⟩, t) =

{
⟨v, T − t, n⟩ v, n > 0, T ≥ t

c0 otherwise

f2(C, ⟨v, T, n⟩) =

{
(C/⟨v, T, n⟩) ∪ ⟨v, T, n− 1⟩ n > 0

C/⟨v, T, n⟩ otherwise

(50)

Because now a coupon can expire before a trip ends, we include the state transition fc within
the formulation of individual trips. However, such a transition depends on the realized trip time and
ultimately the travel mode. Here, we use tx and t′x to represent the vector of estimated and realized
trip times, respectively. Because these new variables make the problem more complicated, we introduce
the following assumptions for a simple characterization.

Assumption 12. (a) The time discount factor γ equals to 1 (there is no time discount effect).

(b)
∑

i ̸=1 P (i)V (f1(C, t
′
xi)) = (1 − P (1))V (f1(C, t̄)); t̄ ∈ R+ can be interpreted as the expected trip

time from alternative modes.

Now, the value functions in the discrete time setting with time unit t0 can be given as follows.

V π
t0 (C) = (1− λ̄jt0)V

π
t0 (f1(C, t0)) + λ̄jt0EX{V π

t0 (f1(C, ⌈t̄/t0⌉ · t0))+
πxj(px,uxj , C)[uxj − V π

t0 (f1(C, ⌈t̄/t0⌉ · t0)) + EX′|XV π
c,t0(p

′
x, f1(C, ⌈t′x1/t0⌉ · t0))]

− πxj(px,uxj , C0)uxj},

V π
c,t0(p

′
x, C) =

∑
c∈C

πc(c|p′x, C)[r(p′x, c) + V π
t0 (f2(C, c))],

V π
t0 (C0) = 0.

(51)

On the other hand, the value functions in the continuous time setting can be given as follows.

V̄ π(C) = Eδt|λ̄j
{EX{V̄ π(f1(C, t̄+ δt))+

πxj(px,uxj , C)[uxj − V̄ π(f1(C, t̄+ δt)) + EX′|X V̄ π
c (p′x, f1(C, t

′
x1 + δt))]

− πxj(px,uxj , C0)uxj}},

V̄ π
c (p′x, C) =

∑
c∈C

πc(c|p′x, C)[r(p′x, c) + V̄ π(f2(C, c))],

V̄ π(C0) = 0.

(52)

The similarity between the above two equations actually leads to the following equivalence result:
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Proposition 3. The value function V π
t0 in the discrete time setting converges to the value function

V̄ π in the continuous time setting as the time step size t0 diminishes to 0:

V̄ π(C) = lim
t0→0

V π
t0 (C), ∀C ∈ C. (53)

Proof of Proposition 3. First, let Q̄π(C, δt) be

EX{V̄ π(f1(C, t̄+ δt))+

πxj(px,uxj , C)[uxj − V̄ π(f1(C, t̄+ δt)) + EX′|X V̄ π
c (p′x, f1(C, t

′
x1 + δt))]

− πxj(px,uxj , C0)uxj}.
(54)

Then we have

−d{V̄ π(f1(C, t))}
dt

= − d

dt

∫ ∞

0

λ̄je
−λ̄jδtQ̄π(C, t+ δt)dδt

= − d

dt

∫ ∞

t

λ̄je
−λ̄j(δt−t)Q̄π(C, δt)dδt

= λ̄jQ̄
π(C, t)−

∫ ∞

t

λ̄2
je

−λ̄j(δt−t)Q̄π(C, δt)dδt

= λ̄j [Q̄
π(C, t)− V̄ π(f1(C, t))].

(55)

If we let t = 0 in the above equations, we have

−d{V̄ π(f1(C, t))}
dt

|t=0 = λ̄j [Q̄
π(C, 0)− V̄ π(C)]. (56)

Secondly, if we let Qπ
t0(C, δt) be

EX{V π
t0 (f1(C, δt + ⌈t̄/t0⌉ · t0))+

πxj(px,uxj , C)[uxj − V π
t0 (f1(C, δt + ⌈t̄/t0⌉ · t0)) + EX′|XV π

c,t0(p
′
x, f1(C, δt + ⌈t′x1/t0⌉ · t0))]

− πxj(px,uxj , C0)uxj},
(57)

we have

−
d{limt0→0 V

π
t0 (f1(C, t))}
dt

|t=0 = lim
t0→0

V π
t0 (C)− V π

t0 (f1(C, t0))

t0
= lim

t0→0
λ̄j(Q

π
t0(C, 0)− V π

t0 (f1(C, t0)))

= λ̄j( lim
t0→0

Qπ
t0(C, 0)− lim

t0→0
V π
t0 ((C)).

(58)

Because

lim
t0→0

Qπ
t0(C, 0) = EX{ lim

t0→0
V π
t0 (f1(C, t̄))+

πxj(px,uxj , C)[uxj − lim
t0→0

V π
t0 (f1(C, t̄)) + EX′|X lim

t0→0
V π
c,t0(p

′
x, f1(C, t

′
x1))]

− πxj(px,uxj , C0)uxj},

(59)

we can see that equations (56) and (58) actually refer to the same differential equation. Given boundary
condition limt0→0 V

π
t0 (C0) = V̄ π(C0) = 0, we know the solution to the differential equation is unique

and therefore limt0→0 V
π
t0 (C) = V̄ π(C).
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A.2 Proofs

A.2.1 Proof of Corollary 1

Proof of Corollary 1. By replacing the coupon set C in equations (7), (9) and (10) with the default
set C0, we have

Uπ(C0) = (1− λj)γU
π(C0) + λjEXUπ

xj(px,uxj , C0),

Uπ
xj(px,uxj , C0) = (1− πxj(px,uxj , C0))γU

π(C0) + πxj(px,uxj , C0)[uxj + EX′|XUπ
c (p

′
x, C0)] + ux1̃j ,

Uπ
c (p

′
x, C0) = γUπ(C0),

(60)
which we can simplify to

Uπ(C0) = (1− λj)γU
π(C0) + λjEX{(1− πxj(px,uxj , C0))γU

π(C0) + πxj(px,uxj , C0)[uxj + γUπ(C0)] + ux1̃j}
= γUπ(C0) + λjEX [ux1̃j + πxj(px,uxj , C0)uxj ]

=
1

1− γ
λjEX [ux1̃j + πxj(px,uxj , C0)uxj ].

(61)

A.2.2 Proof of Proposition 1

Proof of Proposition 1. First, it is easy to see that Uπ
c (p

′
x, C0) = γUπ(f(C0)) = γUπ(C0). Now, by

the definition of V π and V π
c , and equations (7), (9) and (10), we have

V π
c (p′x, C) =

∑
c∈C

πc(c|p′x, C)[r(p′x, c) + γUπ(f(C, c))]− γUπ(f(C0))

=
∑
c∈C

πc(c|p′x, C)[r(p′x, c) + γV π(f(C, c))],
(62)

and

V π(C) = γ[Uπ(f(C))− Uπ(f(C0))] + λjEX{
πxj(px,uxj , C)[uxj + EX′|XUπ

c (p
′
x, C)− γUπ(f(C))]

− πxj(px,uxj , C0)[uxj + EX′|XUπ
c (p

′
x, C0)− γUπ(f(C0))]}

= γV π(f(C)) + λjEX{
πxj(px,uxj , C)[uxj + EX′|XV π

c (p′x, C)− γV π(f(C))]− πxj(px,uxj , C0)uxj}.

(63)

A.2.3 Proof of Proposition 2

Lemma 1. If x ≥ y, then we have

I(x ≥ 0)(x− y) ≥ max(x, 0)−max(y, 0) ≥ I(y ≥ 0)(x− y), (64)

where I(·) is the indicator function.

Proof of Lemma 1. Since x ≥ y, we have y ≥ 0 ⇒ x ≥ 0, and x < 0 ⇒ y < 0. Therefore

max(x, 0)−max(y, 0) = I(y ≥ 0)(max(x, 0)−max(y, 0))

+ I(y < 0)(max(x, 0)−max(y, 0))

= I(y ≥ 0)(x− y) + I(g(x) < 0)max(x, 0)

≥ I(y ≥ 0)(x− y).

(65)
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Similarly, we have

max(x, 0)−max(y, 0) = I(x ≥ 0)(max(x, 0)−max(y, 0))

+ I(x < 0)(max(x, 0)−max(y, 0))

= I(x ≥ 0)(x−max(y, 0))

≤ I(x ≥ 0)(x− y).

(66)

Proof of Proposition 2. First, recall that in the coupon selection stage, default action c0 is always
available. Therefore the ex post value function V ∗

c (p
′
x, C) has a lower bound

V ∗
c (p

′
x, C) ≥ r(p′x, c0) + V ∗(f(C, c0)) = V ∗(f(C)). (67)

This further leads to
uxj + EX′|XV ∗

c (p
′
x, C)− V ∗(f(C)) ≥ uxj . (68)

Now, applying Lemma 1 with x = uxj + EX′|XV ∗
c (p

′
x, C)− V ∗(f(C)) and y = uxj , we have

max(uxj + EX′|XV ∗
c (p

′
x, C)− V ∗(f(C)), 0)−max(uxj , 0) ≥ I(uxj ≥ 0)[EX′|XV ∗

c (p
′
x, C)− V ∗(f(C))],

max(uxj + EX′|XV ∗
c (p

′
x, C)− V ∗(f(C)), 0)−max(uxj , 0) ≤ I(uxj + EX′|XV ∗

c (p
′
x, C)− V ∗(f(C)) ≥ 0)·

[EX′|XV ∗
c (p

′
x, C)− V ∗(f(C))].

(69)
Putting above inequalities back to the ex ante value function in equation (14), we have

V ∗(C) ≥ V ∗(f(C)) + λjEXI(uxj ≥ 0)[EX′|XV ∗
c (p

′
x, C)− V ∗(f(C))],

V ∗(C) ≤ V ∗(f(C)) + λjEXI(uxj + EX′|XV ∗
c (p

′
x, C)− V ∗(f(C)) ≥ 0)[EX′|XV ∗

c (p
′
x, C)− V ∗(f(C))].

(70)
Since λjEXI(uxj + EX′|XV ∗

c (p
′
x, C) − V ∗(f(C)) ≥ 0) is exactly the service selection probability

P (x′ = 1|C, λj , Pj), the equations above can be further simplified to

V ∗(C) ≥ V ∗(f(C)) + Ex′,p′
x|C0

I(x′ = 1)[V ∗
c (p

′
x, C)− V ∗(f(C))],

V ∗(C) ≤ V ∗(f(C)) + Ex′,p′
x|CI(x

′ = 1)[V ∗
c (p

′
x, C)− V ∗(f(C))],

(71)

Notice that in equations above we hide the fact that x′ and p′x are conditional on λj , Pj and P ′
j .

Now, given boundary condition V ∗(C0) = V L(C0), we can show by the induction principle that for
every C ∈ C

V ∗(C) ≥ V ∗(f(C)) + Ex′,p′
x|C0

I(x′ = 1)[V ∗
c (p

′
x, C)− V ∗(f(C))]

= Ex′,p′
x|C0

I(x′ = 0)V ∗(f(C)) + Ex′,p′
x|C0

I(x′ = 1)V ∗
c (p

′
x, C)

≥ Ex′,p′
x|C0

I(x′ = 0)V L(f(C)) + Ex′,p′
x|C0

I(x′ = 1)V L
c (p′x, C)

= V L(f(C)) + Ex′,p′
x|C0

I(x′ = 1)[V L
c (p′x, C)− V L(f(C))]

= V L(C).

(72)

Similarly we have V ∗(C) ≤ V U (C), ∀ C ∈ C given V ∗(C0) = V U (C0).
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A.3 Notation table

coupon related

face value v
time to expire T

number of coupons in the group n
coupon c̃

coupon group c
default (zero-valued) coupon group c0

coupon set C
awareness coupon subset Ca

set of all coupon sets C
set of all awareness subset of set C A(C)

model related

trip demand generation rate of traveler j λj

mean of log fare log(p′x) of traveler j µpj

standard deviation of log fare log(p′x) of traveler j σpj

estimated trip fare px
vector of trip utilities from different travel modes uxj

relative utility gain in taking the target mobility service uxj

mode selection of travelers i
whether there is a trip served by the target mobility service x′

realized trip fare p′x
state of attention Sa

coupon activation record function Ia(·)
coupon redemption utility function r(·, ·)

state transition functions of coupon set f(·, ·)
state transition functions of coupon fc(·)
state transition function of attention fa(·, ·, ·)

discount factor γ

value function related

mode selection policy of traveler j πxj(·, ·, ·)
coupon selection policy of travelers πc(·, ·)

expected accumulated utility under policy π Uπ(·)
utility gain from coupon sets under policy π V π(·)

optimal utility gain from coupon sets V ∗(·)
lower & upper bound of V ∗ V L(·), V U (·)

approximated utility gain from coupon sets V̂ (·)
estimation of utility gain from coupon sets (random variable) V (·)

estimation error (random variable) εV (·)
others

dataset D
model parameters θ
sigmoid function σ(·)
indicator function I(·)

Table 9: Summary of major notations
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A.4 Estimation results with the whole dataset

Inattention Utility Model and Extensions Evaluation

Unaware? θa θas Clip? Extra? Scaled? θε θV θv LL Accuracy

0 N/A N/A 0 0 0 0.064 0.852 N/A -0.638 0.677
0 N/A N/A 0 1 0 0.177 0.114 0.669 -0.594 0.708
0 N/A N/A 0 0 1 1.144 0.665 N/A -0.639 0.663
0 N/A N/A 0 1 1 3.676 0.061 0.712 -0.593 0.706

1 0.392 2.444 0 0 0 0.379 0.785 N/A -0.560 0.701
1 0.613 3.100 0 1 0 0.361 0.440 0.327 -0.547 0.716
1 0.385 2.600 0 0 1 6.135 0.760 N/A -0.555 0.701
1 0.594 3.841 0 1 1 6.429 0.395 0.365 -0.542 0.716

1 0.377 1.722 1 0 0 0.217 0.913 N/A -0.549 0.714
1 0.438 1.684 1 1 0 0.293 0.534 0.289 -0.543 0.718
1 0.370 1.732 1 0 1 4.814 0.871 N/A -0.549 0.714
1 0.437 1.691 1 1 1 6.479 0.505 0.289 -0.543 0.718

Table 10: Estimated parameters and performance in the case with only one coupon on the whole
dataset

Inattention Utility Model and Extensions Evaluation

Unaware? θa θas Clip? Extra? θε θV θv LL Accuracy

0 N/A N/A 0 0 0.124 0.802 N/A -0.832 0.709
0 N/A N/A 0 1 0.242 0.329 0.466 -0.795 0.725

1 -0.490 2.530 0 0 0.346 0.724 N/A -0.709 0.699
1 -0.448 2.723 0 1 0.447 0.490 0.245 -0.693 0.705

1 -0.700 1.561 1 0 0.377 0.708 N/A -0.722 0.697
1 -0.664 1.577 1 1 0.504 0.482 0.219 -0.710 0.703

Table 11: Estimated parameters and performance on subset |A(C)| ≤ 64 of the whole dataset
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